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Abstract. We show that a system of charged harmonic oscillators interacting with one 
transverse electromagnetic field mode does not undergo the super-radiant phase transition. 
Our proof does not make use of the multipole expansion and takes retardation into account. 

1. Introduction 

The dependence of the thermodynamic properties of a gas on the interaction of atoms 
with the transverse radiation field has been studied extensively in the last few years. For 
the simple Dicke Hamiltonian (Dicke 1954), Hepp and Lieb (1973a) have proved the 
existence of a so-called super-radiant phase transition. Above a certain critical density 
of the atoms and below a critical temperature a condensed phase forms with a 
macroscopic population of the photon states. 

It turns out that this phenomenon is due to an anomaly of the spectrum of the 
Hamiltonian considered, an anomaly which is absent in more realistic models describ- 
ing electric dipole interaction of atoms with radiation (Rzgiewski et a1 1975). 

In Bialynicki-Birula and Rzgzewski (1979) we have shown that, in a system of atoms 
interacting with a finite number of electromagnetic field modes in the electric dipole 
approximation, the partition function is independent of the interaction with the 
radiation. 

It follows from this result that one has to include higher multipoles or take into 
account an infinite number of the field modes to have a chance of finding a non-trivial 
dependence of the equilibrium thermodynamic properties of a gas on the coupling to 
radiation. 

In this paper we develop a method suitable for treating higher multipoles. The 
method is then applied to the harmonic oscillator model. The result is negative. The 
system does not undergo a second-order phase transition. 

The thermodynamics of a certain many-oscillator model has been studied recently 
by Knight et a1 (1978), but their model is not derived from a minimal-coupling 
Hamiltonian and in no sense does it deal with higher multipoles. 

2. Themethod 

Let us consider a model consisting of N identical single-electron atoms located at fixed 
positions Rj ( j  = 1 . . . N) and interacting with a single transverse electromagnetic field 
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mode of frequency U,  wavevector k, polarisation E. The non-relativistic electro- 
dynamics Hamiltonian for the system reads 

N 

j= l  
H = { ( 1 / 2 m ) [ p j - ( e / c ) A ( R j + r i ) I 2 +  V(rj)+hwa’a}  (2.1) 

where rj and pi denote the position and the canonical momentum of the electron in the 
jth atom, V(r j )  is the Coulomb potential binding the electrons in each atom, a, a +  are 
annihilation and creation operators of the mode and the vector potential is given by 

(2.21 

where V denotes the volume of the cavity. Note that in the Hamiltonian (2.1) we have 
ignored direct atom-atom electrostatic interactions. 

To find the equilibrium thermodynamic properties of the system we must compute 
the partition function 

Z ( N ,  T )  = Tr[exp(-PH)]. (2.3) 

We have to compute the trace over both field and atomic variables. This task is 
simplified greatly by the observation (Wang and Hioe 1973) that the leading term in the 
thermodynamic limit (N + 03, V + 03, p = N /  V fixed) comes from the normal ordering 
of the field operatorst in equation (2.3). Therefore, using the coherent state represen- 
tation for the field trace, we can simply replace creation and annihilation operators U +  

and U by the classical c number complex amplitudes a*, a, with respect to which an 
integral must be performed at the end. Hence 

A(R + r )  = (271.h~~/wV)”~€{exp[ik. (R + r ) ]a  +exp[-ik. (R + r ) ]a”}  

where hj (a )  is now simply the Hamiltonian of the jth atom in the external classical field 
of the amplitude a. This Hamiltonian can be written as the sum of three terms: 

(2.5) hi(*) = @’ +hi’’ + @’ 

where (dropping the unnecessary index j )  

h‘O’= (1/2m)p2+ V ( r )  12.6) 

is the free atomic Hamiltonian, 

h‘” = - ( e / m c ) p  . A(R + r> 

is the usually included ‘ p  . A’ term, and 

h‘2’ = (e2 /2mc2)A2(R + r )  

(2.7) 

(2.8) 

is the often neglected ‘A2’ term. The importance of this term in the study of 
thermodynamics has been repeatedly stressed by the present author. 

For N + 03, the integral (2.4) can be computed by the saddle-point method. If the 
only saddle-point that appears is a = 0, then we have the normal phase. A phase 

t This widely used substitution has been proved by Hepp and Lieb (1973b) for two-level atoms, but the basic 
ingredient-the fact that creation and annihilation operators are entering the Hamiltonian through a / f i ,  
a+/v”-is universal and comes from normalisation of the vector potential. 
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transition is indicated by a switch from positivity to indefiniteness or possibly negativity 
of the quadratic form: 

2 

1.i 
Bhw(a12+$ (a2F(a)/aXi 8 X j ) X i X j  (a =xl+ix2) (2.9) 

where 
N N 

j-1 j= l  
F ( a )  = h(a) = - In Tr[exp(-phi(a))]; (2.10) 

that is, we rewrite equation (2.4) in the form 

Z ( N ,  T) - (d2a / r )  exp(-phWla12-F(a)). (2.1 1) 
N-bm 

However, to study the positivity of the quadratic form (2.9) we do not need to know the 
function F ( a )  beyond its quadratic term in a. In other words, we do not need the exact 
energy levels of equation (2.5), but only their perturbative values up to second order in 
h"' and first order in h'*'. 

First-order corrections to the trace coming from h"' usually vanish. The base 
usually exists in which all the diagonal elements of h'l' are equal to zero. Then we get 

f (u )  = -In Tr[exp(-pH(a))] 

3 -In Tr[exp(-ph"')]+p 1 e~p(-pE~~')E(,~)(a)/Tr[exp(-@h'~')] (2.12) 

where E?' are the energy levels of h(O' and EL2' are the appropriate perturbative 
corrections. The sum in the numerator of the second term in equation (2.1 1) consists of 
two parts: one coming from p .  A and the other coming from the A' term. 

Simple representations for the perturbative corrections can be found in the lit- 
erature (e.g. March et a1 1967): 

n 

1 exp(-BE~o')(nIh'2'ln) = Tr[e~p(-ph'~')h'~'] 
n 

and 

B 
= -3 jo d7 Tr{exp[(.r -/3)h"']h"' exp[(-~h(~))h(~']}. 

To go any further we have to specify the potential in h"' at this point. 

3. Harmonic oscillators 

(2.13) 

(2.14) 

In this section we will apply the method outlined above to the harmonic oscillator 
problem, for which, as we show here, a complete analytical solution can be found. One 
can easily check that in this case all the diagonal elements of h"' vanish in the 
occupation number base, and that formulae (2.13) and (2.14) hold. 
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where wo is the frequency of free oscillations. 
If we choose the reference frame such that k = (k, 0,O) and E = (0,1,0), then the 

oscillations along the z axis will not be affected by the coupling to radiation and we deal 
effectively with a two-dimensional harmonic oscillator with unperturbed energy levels 

(3.2) E‘O’ nx.ny = hwo(n, + ny) 

In,, ny) = [ (a : )n~(a : )n~ /Jn , !n , ! l lO ,  O ) ,  

x = (h/2mwo)1/2(a: + a , ) ,  

y = (ti/2mwo)’/2(al + a y ) ,  

(n,, n, = 0, 1 , 2  . . . )  

and corresponding states In,, ny), 

(3.3) 

created from the ground state by appropriate creation operators 

p ,  = i(mhw0/2)’/2(a: - - U , ) ,  

p y  = i(mhwo/2)1/2(a: - a y ) .  
(3.4) 

The interaction Hamiltonians, when expressed in terms of and read 

h‘” = -i(hwo/2m)’/2(a: - a y ) { y  exp[iK(a: +a,)]+ y* exp[-irc(a: +a,)]) (3.5) 

and 

h‘”= (1/2m){y exp[iK(a: +a,)]+y* exp[-iK(a: +a,)])2 (3.6) 

where 

y = e(27rhp/w)1’2(a/J3 exp(ik. R) (3.7) 

and 

K = k(h/2f?IU0)~/~. 

We start with the computation of the A* contribution (2.13): 
(0) (2) Tr[exp(-@h )h  1 

where Y = hwo@ is the dimensionless inverse temperature. 
We have used here the well-known expression for the matrix element: 

( n  1 exp(isa + + im)l n ) = exp( -sr/2)Ln ( S T ) /  n ! (3.10) 

But now we can perform the remaining sum in equation (3.9) by recognising the 
where L, denotes Laguerre polynomials. 

generating function for Laguerre polynomials: 

(3.11) 
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The final result takes the form 
(0) (2 )  Tr[exp(-Bh )h  1 

(3.12) 
= [1/2m(1- e-’)’X2yy* + (y’+ y*’) exp[-2~’(1 +e-”)/(I -e-”)]). 

We turn now to the p .  A sum. First we observe that the action of exp(.rh“)) and 
exp(-.rh“)) is just the free evolution of creation and annihilation operators for 
imaginary time: 

exp(.rh(o))a:y exp(-Th“’) = exp(f)a=, ( 3 . 1 3 ~ )  

exp( 7h (o))ax.y exp( -7h (O) )  = exp(-f)ax,y (3.136) 

where 5‘ = hwor. 
By making repeated use of the Baker-Hausdorff formula as well as formulae (3.10) 

and (3.11), and introducing the dimensionless parameter 5‘ as an integration variable, 
we obtain 

-[1/4m(l -e-”)3] I’df[exp(f- v)+exp(-f)] 
0 

x [ ( y ’ +  y*’) exp{-K2[(1 +e-’)/(I -e-”)+(e“’+e-‘)/(I -e-”)]) 

+ 2yy* exp{-K2[(1 +e-”)/(l -e-”) - (e“” + e-‘)/(l -e-”)]}]. (3.14) 

When both contributions are added we finally obtain 

f ( a ) =  f ( a  = O)+(P/m)(Re y)’[l +exp[-2~’coth(v/2)] 

- 2{exp[ - K ’ coth(v/2)]/sinh( v/ 2)] 

X Io Cosh[K’ cosh x/sinh(v/2)] cosh x dx] 

+ (P/m)(Im y)’[l -exp[-2~’ coth(v/2)] 

v i z  

- 2{exp[-~’ coth( v/2)]/sinh( 4 2 ) )  

x j0 sinh[K’ cosh x/sinh(v/2)] cosh x dx] 
V / 2  

(3.15) 

The expression, complicated as it is, may still be analysed. Since both sinh y and 
cosh y are monotonically increasing positive functions when y > 0, we find the estimates 

4 2  io Cosh[K’ cosh xlsinh (v/2)] cosh x dx ssinh(v/2) Cosh[K’ coth(v/2)] (3.16) 

and similarly 

jo sinh[K’ cosh x/sinh(v/2)] cosh x dx S sinh(v/2) sinh[K’ coth(v/2)] (3.17) 

from which it follows that both terms in shadow brackets are non-negative. Therefore 
f ( a )  has a non-negative quadratic form in the expansion at a = 0. 

Although, due to the phase factors exp(ik . R), the normal directions for different 
oscillators are in general different, the sum of non-negative quadratic forms is still 

v i z  
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non-negative and (Y = 0 remains a local maximum for the interacting system indepen- 
dent of the values of the parameters such as mass, frequency, electric charge, oscillators’ 
positions, temperature or K (which is the ratio of the size of the first orbit of the 
oscillator to the wavelength of the field mode). The method developed in this paper is 
not strong enough to rule out a possibility of the appearance of a global maximum of the 
integrand in equation (2.4) completely separated from the ever-present local maximum 
at a = 0. If this were the case, a first-order phase transition would be encountered. This 
seems very unlikely, however, because this never showed up in the exactly soluble 
models of matter plus radiation. 

The result (3.15) is in complete agreement with our ‘no-go theorem’ (Biatynicki- 
Birula and Rzgiewski 1979). Indeed, if K is set equal to zero (the electric dipole 
approximation) then all the (Y dependence (to second order in the present case) of f(a) 
vanishes. 
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